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Abstract. We apply periodic orbit theory to a quantum billiard on a torus with a variable number
(N ) of randomly distributed circular scatterers. Provided the scatterers are much smaller than the
wavelength they may be regarded as sources of pure s-wave diffraction. The relevant part of the
spectral determinant is due only to diffractive periodic orbits. We formulate this diffractive zeta
function in terms of anN ×N transfer matrix, which is transformed to real form. The determinant
is shown to reproduce the full density of states for generic configurations ifN > 4. The zeros
of the determinant are computed numerically. We study the statistics exhibited by these spectra.
The numerical results suggest that the spectra tend to GOE statistics as the number of scatterers
increases for typical members of the ensemble. A peculiar situation arises for configurations with
four scatterers andkR tuned tokR = y0,1 ≈ 0.899, where the statistics appears to be perfectly
Poissonian.

1. Introduction

Universal level statistics of classically chaotic systems is an asymptotic (i.e. semiclassical)
property of a spectrum. For homogeneous systems, such as billiards, it appears in the high-
energy limit of the spectrum. Usually there is a pre-asymptotic regime where the statistics
reflects characteristics of classical or quantum origin specific to the system.

Studies of non-universal level statistics, and the approach to universal level statistics, as
proposed by random matrix theories, have proceeded mainly along the following three lines.

(1) Via classical diffusion and inhibition of quantum diffusion due to dynamical localization
[1].

(2) Via nonlinearσ models and supersymmetric techniques [2].
(3) Via periodic orbit theories.

This first approach has been been studied for periodically driven systems but generalization
to billiards has recently been suggested [3]. The second approach has shown dynamical
progress during recent years. In this paper we will pursue the third approach.

Admittedly, periodic orbit theories based on the semiclassical trace formula [4] have not
been very successful for studies of spectral statistics. One exception is Berry’s theory of long-
range spectral correlations [5], or equivalently, the smallτ limit of the form factorK(τ), which
can be related to periodic orbits. This limit can be related to the largeτ limit by assuming
that the spectra are real [6]. Under thediagonal approximationthese result can be extended to
intermediate values ofτ but the conditions under which this approximation is valid are obscure
[7].
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The possibility of tracing level statistics to classical dynamics very much hinges on the
ability of the trace formula to produce real eigenvalues. In this introduction, we will discuss
various problems of the trace formula in this respect. After that we will suggest a role for
periodic orbit theories where none of these problems are recognized.

To simplify the discussion of periodic orbit theories below we will confine ourselves to
dispersive billiards consisting of one or several discs, all with radiusR, inside a rectangle or
a torus. We thus limit the number of relevant length scales to essentially one. One obvious
condition for the trace formula to be applicable iskR � 1, wherek = √2mE/h̄ is the
wavenumber†. Non-universal effects are expected to be pronounced for intermediate values
of kR, and are thus to be sought in the region where the validity of the trace formula is dubious
from the very beginning.

Diffraction presumably plays a much more important role in a bound system than in an
open one, and the Gutzwiller formula has to be amended by sums over diffractive periodic orbits
[8, 9]. However, it is not obvious how much the inclusion of diffractive orbits will improve
the situation. Thegeometric theory of diffractionhas been very successful for open systems,
where it provides small corrections, but its applicability is questionable in thepenumbraof disc
scattering [10, 11]. The basic problem is the interference between trajectories being scattered
in an extreme forwards direction and trajectories sneaking close to the disc. Their respective
saddle points are not separated enough and individual eigenstates cannot be resolved by the
Berry–Keating technique [12]. This should hardly come as a surprise. The failure to predict
individual eigenvalues in the semiclassical limit has been expected from the very beginnings
of the trace formula. However, this pessimism has lessened since the successes of the Berry–
Keating scheme [13, 14].

The situation may be better for systems without neutral orbits. But even if a model system
may be found for which the trace formula is accurate enough, one still faces more practical
problems. In numerical studies one is plagued by the exponential growth of the number of
periodic orbits. Approaching the semiclassical limit of the spectrum is a truly painstaking
experience. In analytical studies one has to control the asymptotics of the periodic orbits,
beyond the flow conservation sum rule [15].

The harsh moral of this discussion is that it is not an easy task to pursue periodic theories
as a means to study the emergence of universality askR → ∞. We have discussed two
sources of problems: the first concerned the validity of the trace formula and the second the
exponential proliferation of human and computer labour to actually compute things.

The situation turns out to be very different in the opposite limit (kR � 1). The discs can
now be considered as sources of pure s-wave diffraction. The unstable orbits are replaced by
purely diffractive orbits. The exponential explosion of the periodic orbit can be tamed, because
the zeta function can, as we will see, be written in terms of a finite transfer matrix. So, it is
within reach to study level statistics within the framework of periodic orbit theories.

In [16] we studied the smallkR limit for the one-disc case. This limit is not only much
easier to deal with, it is also much richer in behaviour. In particular, theA1 subspace exhibits a
wide range of level statistics in the diffractive region which, due to symmetry effects, extends up
tokR ≈ 4. For very small values ofkR the statistics approaches the Poissonian; a similar effect
may be observed atkR ≈ 2.40 but corrections to the diffraction approximation probably distort
the effect slightly. WhenkR ≈ 0.899 the statistics is very close to GOE. It should approach
GOE properly first in the limitkR → ∞. One of the questions we will address is whether
GOE statistics can be achieved by keepingkR small, and increasing the number of scatterers,
and distribute them randomly over a torus. We will thus enter the realm of disordered systems.

† From now on we will use units such thatm = h̄ = 1.
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Such adisordered Lorentzgas has been studied in [17] in the the Gutzwiller limitkR � 1.
We have chosen to study spectral statistics forindividual members of our disordered

ensembles, for various values of the parameters (N andkR). Any study of non-universality and
approaches to universality for a single chaotic system (utilizing self-averages of the spectrum)
will suffer from finiteness of the sample. Some non-universal effects, like fine wiggles on the
form factor proposed by [18, 2] may not relevant when applied to a single system [19], but this
is not the kind of effect we will be looking at.

The basic motivation of this paper is conceptual rather than physical, although our studies
do have bearing on impurity scattering in mesoscopic devices. The system considered in this
paper has obvious similarities with antidot lattices [20]. However, present-day antidot lattices
are modelled by rather smooth potentials and they lie in the intermediate regionkR ∼ 2π
(with R suitably defined), a region where semiclassical methods are not very attractive.

The outline is as follows. The eigenvalues are recognized as the zeros of thespectral
determinant, which we will derive within the geometric theory of diffraction. We will focus
on the diffractive determinant (or zeta function), associated with periodic orbits with at least one
scattering on a diffractive object. This is formulated in section 2.1. The determinant exhibits
poles on the real axis and will diverge unless it is resummed, which is done in section 2.2. In
section 2.3 we discuss some numerical issues. In section 3 we derive the mean level density
of zeros of the diffractive determinant. In particular we show that the full density of states is
reproduced by the determinant first ifN > 4. In section 4 we compute spectra numerically
and study their statistics.

2. The diffractive determinant

2.1. Derivation of the diffractive determinant

In thegeometric theory of diffraction[8, 9, 21] the spectral determinant is divided into a product

1(E) = 10(E) ·1G(E) ·1D(E) (1)

where10(E) corresponds to the mean level density; the geometric part,1G(E), is the
Gutzwiller–Voros zeta function, possibly amended with the neutral orbits. We will be solely
interested in the diffractive determinant1D(E). It was derived for a non-diffractive system
supplied withN small discs in [16]. The result will now be reviewed.

We thus assume the presence ofN small diffractive objects located atrj , where 16 j 6 N
whose diffraction constantsdj (E) do not depend on the scattering angle. We introduce
symbolic dynamics by enumerating the disc from 1 toN . The alphabet is now{j ; 16 j 6 N}.
The set�D is defined as the set of all primitive periodic sequences of symbols taken from this
alphabet.

The diffractive determinant (or zeta function) is now given by

1D(E) =
∏
p∈�D

(1− tp). (2)

The weighttp is given by

tp =
np∏
i=1

dkiGG(rki−1, rki , E) (3)

wherep = k1k2 . . . knp . andk0 = kn. GG(r, r
′, E) is the geometric Green function, that is the

Green function associated with the original system, before any diffractive objects have been
inserted. We will choose, as this underlying system, a rectangle with sidesa andb supplied
with periodic boundary conditions.
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TheN diffractive objects will be small discs, all with the same radiusR. The diffraction
constant is then given by [24]

d(E) = −4i
J0(kR)

H
(1)
0 (kR)

(4)

provided thatkR is small.
The geometric Green functionGG(r, r

′, E) can be expressed in terms of the free Green
function in two dimensions

G0(r, r
′, E) ≡ G0(r

′ − r, E) = − i

4
H
(1)
0 (k|r − r′|) (5)

by the method of images

GG(r, E) =
∑

ρ=(ma,nb)
G0(r + ρ,E) (6)

where the sum runs over all integerm andn.
We will not take take any semiclassical limit of the Green functions, but it is instructive

to note that the Green function (6) has a semiclassical interpretation as a sum over all (non-
diffractive) paths(j) from r to r′

GG(r, r
′, E) ∼

∑
J :q 7→q ′

G
(J)
GV (r, r

′, E) (7)

whereGGV is given by the usual van Vleck–Gutzwiller expressions [4]. The symbolic
transition. . . jiji+1 . . . does not (in the semiclassical limit) correspond toonetrajectory from
rji to rji+1, as is usual in symbolic dynamics, butall trajectories fromrji to rji+1.

Due to a singularity of the Hankel functionH(1)
0 (k|r − r′|), expression (6) diverges if

r → r′. We define a regularized geometric GreenG̃G(r, E) function by subtracting this
singularity. ThediagonalGreen function from a disc to itself is then defined by

G̃G(r = 0, E) = − i

4

∑
ρ 6=

H
(1)
0 (kρ) (8)

and theoff diagonalas before

G̃G(r 6= 0, E) = − i

4

∑
ρ

H
(1)
0 (k|ρ + r|). (9)

The multiplicative property of the weightstp (3) and the existence of a complete symbolic
dynamics enables the diffractive determinant, or zeta function, to be written in terms of a finite
transfer matrix [22, 23]

Tij = d(E) · G̃G(rj − ri , E) (10)

via

1D(E) = det(1− T ). (11)

2.2. Making the sums converge and the determinant real

The sums (9) and (8) diverge for realE and we will resort to the Ewald summation technique as
developed in [25] in order to control the singularities. This procedure transforms thediagonal
Green function to

G̃G(0, E) = 1

ab

∑
g=2π(m/a,n/a)

exp(Q[1− g2/(2E)])

2E − g2
− 1

4π
Ei(Q) +

i

4
− 1

4π

∑
ρ 6=

I

(
k

2
|ρ|
)

≡ G(r)(0, E) +
i

4
(12)
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whereI (x) is defined by the integral

I (x) =
∫ ∞

log(x/Q)
exp(−2x sinhξ) dξ. (13)

These expressions are essentially identical to those in [25], we have just kepta andb as free
parameters.

Theoff-diagonalGreen function (9) is, after resummation,

G̃G(r12, E) = 1

ab

∑
g

cos(r12 · g)
exp(Q[1− g2/(2E)])

2E − g2
− 1

4π

∑
ρ

I

(
k

2
|ρ + r|

)
r12 6= 0. (14)

The derivation of this expression requires only a slight generalization of the derivation in [25],
and so we omit it. Note that the off-diagonal terms are real.

In order to get a real expression for the determinant (11) we simply extract a factord(E)

from each row

1D(E) = (−d)n det(M). (15)

The matrix elements ofM

Mij =


1

4

Y0(kR)

J0(kR)
+ G̃(r)

G (0, E) i = j
G̃G(rij , E) i 6= j

(16)

are then all real.
The energy dependence enters through the Green functionsG̃G(r, E) and the

renormalized diffraction constant

d̃ ≡ 1

4

Y0(kR)

J0(kR)
. (17)

We will in computations artificially fixd̃ and keep the energy dependence only in the Green
functions, for reasons that will be discussed later.

2.3. Numerical considerations

The numerical issue is to compute the Green functions with desired accuracy. The Ewald
summation technique splits up the lattice sum into one sum over the dual lattice and one over
the initial lattice

∑
I . There is however no closed expression for the functionI (x), introduced

in equation (13). The asymptotic behaviour of the functionI (x) is

I (x) = exp(Q− x2/Q)

Q + x2/Q

(
1− x2/Q−Q

(x2/Q +Q)2
. . .

)
. (18)

As Berry noted, for sufficiently smallQ the sum
∑
I can be neglected, as far as the

diagonal Green function is concerned. This is not so for the off-diagonal Green functions. They
are still small in absolute terms, but are nevertheless significant. We have chosen to include the
sum

∑
I , and compute the integral (13) by the asymptotic formula when appropriate. However,

for a small number of terms (a number decreasing with increasing energy) the integral has to
be evaluated numerically. Whenkrmin/Q � 1, wherermin is the smallest inter-disc distance,
this is no longer an issue. This suggests a small value ofQ. On the other hand, a largeQ
is preferred in the dual lattice sum, so the choice ofQ is a compromise and can be adjusted
according to energy.

The determinant was derived in the limit of smallkR. The first correction will involve the
factorY1(kR)/J1(kR) so our diffractive determinant should work well wheneverkR � 1. For
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theN = 1 case the first correction involved the factorY4(kR)/J4(kR), the Bessel functions
of order 1–3 are suppressed due to symmetry effects [25]. The diffractive approximation then
works for slightly higherkR � 4. Indeed, we found in [16] thatkR can be rather close to
the limiting kR = 4 (forN = 1) and presumably rather close tokR = 1 in the general case
(N > 4).

3. Mean level density

In this section we will focus on the mean density of zeros of the determinant1D(E) as given
in equations (11) and (15).

The density of states of the system is given asymptotically by Weyl’s expression

d̄W = ab

2π
. (19)

The diffraction approximation underlying the derivation of the determinant1D(E) does not
ensure that it will reproduce the Weyl density. In fact, it will turn out that the average density
of zeros of1D(E) will depend on the number of scatterers according to

d̄zerosD = min(N, 4)

4
d̄W . (20)

That is, the full spectral density is achieved first whenN > 4. We will study spectra for
fixed values of the parameterd̃(kR) for reasons to be discussed in the next section. But as the
result (20) does not depend on the value ofd̃, it will also apply to the (physical) case where
d̃ = d̃(kR) = d̃(√2ER) is allowed to vary with energyE.

Before actually deriving equation (20) we will make some general comments.
The reason why we do not resolve the full density of states forN = 1 andN = 2 has a

simple explanation in terms of symmetries of the system. The wavefunctions split up into the
irreducible representations of the respective group and our leading order determinant cannot
resolve them all.

If N = 1 the symmetry isC2v. In a coordinate system with its origin at the disc there is
a reflection symmetry with respect to thex- andy-axis. We only resolve14 of the full spectral
density, namely those states with even parity with respect to both axis. A small disc will be
invisible if it sits at a point where the wavefunction, for symmetry reasons, is zero. To resolve
the other subspaces one would need to take higher-order terms in the diffraction constant, and
make a proper desymmetrization. IfN = 2 there is an inversion symmetry with respect to the
point (r1 + r2)/2 and we recover12 of the full spectral symmetry.

It is obvious that for high enoughN one can avoid these kind of symmetry effects.
Now to the derivation of equation (20). First we show that the mean density of zeros of

1D equals the mean density of poles of the same determinant. To show this we can essentially
repeat the arguments in [25]. Berry treated in that paper a slightly different determinant, but
the basic mechanism is the same. The difference between the two integrated spectral densities
is given by [25].

N̄zeros
D (E)− N̄poles

D (E) = − 1

π
〈Im log1D(E + iε)〉 = − 1

π
〈Im log det(1− T )〉

= − 1

π
〈Im tr log(1− T )〉 = 1

π
Im

∞∑
r=1

〈trT r〉
r

. (21)

A term trT r is just a product of oscillating Hankel functions and is zero on the mean.
Next we will compute the density of poles of1D(E). The poles of1D(E)will be located

at the poles of the Green functions whose density isd̄W /4. The problem is to determine their
multiplicity mN .
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To summarize, we have so far:

d̄zerosD = d̄polesD = mN

4
d̄W . (22)

We now study the behaviour of det(M) (with M defined in (16)), close to a pole
corresponding to the quantum numbersm, n > 0, that is 2E is close tog2 = (2π)2((m/a)2 +
(n/b)2). The matrix elements are then (approximately) given by

Mij = δi,j d̃ +
4

ab

cos(2πm(xj − xi)) cos(2πn(yj − yi))
2E − 4π2(m2/a2 + n2/b2)

(23)

where we have summed over the four (dual) lattice points 2π(±m/a,±n/b). If we introduce
the notation

αi = 2πmxi/a

βi = 2πnyi/b
(24)

and

λ = −abd̃
4

2E − 4π2(m2/a2 + n2/b2) (25)

the latter measuring the (small) distance to the pole, we get

detM =
(
d̃

λ

)N
det(λδi,j − cos(αj − αi) cos(βj − βi)) ≡

(
d̃

λ

)N
detM̃ . (26)

The rank of the matrixM̃ is simply the requested multiplicitymN

detM =
(
d̃

λ

)N
O(λN−rank(M̃)) ∼ 1/λrank(M̃). (27)

This rank is the maximum size a matrix having the structure

CCij = cos(ξj − ξi) · cos(ηj − ηi) (28)

can have with a non-vanishing determinant. To explore this problem we introduce three other
matrices

CSij = cos(ξj − ξi) · sin(ηj − ηi)
SCij = sin(ξj − ξi) · cos(ηj − ηi)
SSij = sin(ξj − ξi) · sin(ηj − ηi).

(29)

We further introduce the notationCCj to mean thej th column ofCC, and similarly forCSj
etc. The idea is now to write columnCCj as the following linear combination

CCj = cos(ξj − ξj−1) cos(ηj − ηj−1)CCj−1− cos(ξj − ξj−1) sin(ηj − ηj−1)CSj−1

− sin(ξj−ξj−1) cos(ηj−ηj−1)SCj−1+ sin(ξj−ξj−1) sin(ηj−ηj−1)SSj−1.

(30)

Similar relations hold forCSj , SCj andSSj . The results can be conveniently expressed in
terms of matrices:

uj = Tjuj−1 (31)

where

uj =


CCj
CSj
SCj
SSj

 (32)
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and

Tj = T (ξ = ξj − ξj−1, η = ηj − ηj−1) (33)

and

T (ξ, η) =


cos(ξ) cos(η) − cos(ξ) sin(η) − sin(ξ) cos(η) sin(ξ) sin(η)
cos(ξ) sin(η) cos(ξ) cos(η) − sin(ξ) sin(η) − sin(ξ) cos(η)
sin(ξ) cos(η) − sin(ξ) sin(η) cos(ξ) cos(η) − cos(ξ) sin(η)
sin(ξ) sin(η) sin(ξ) cos(η) cos(ξ) sin(η) cos(ξ) cos(η)

 . (34)

Please note that the elements ofT are scalars, the elements ofu are column vectors. The
external indexj has nothing to do with the internal structure of these objects. From the
definition ofT we have the relation

T (ξj − ξj−1, ηj − ηj−1)T (ξj−1− ξj−2, ηj−1− ηj−2) = T (ξj − ξj−2, ηj − ηj−2). (35)

The basic idea is now to explore whether it is possible to write the column vectorCCn as
a linear combination of the preceding columnsCCj (j < n). We address the corresponding
problem forCSn, SCn andSSn simultaneously, and write

un = Tnun−1 = µn−1un−1 + (Tn − µn−1E)un−1 (36)

whereµn−1 is a multiplier andE is the unit matrix. We continue this procedure until we arrive
at

un =
n−1∑
j=2

µjuj + Su1 (37)

where

S = (TnTn−1 . . .T2)− µn−1(Tn−1Tn−2 . . .T2)− . . . µ2(T2) (38)

or

S = T (ξn − ξ1, ηn − η1)−
n−1∑
j=2

µjT (ξj − ξ1, ηj − η1). (39)

So the firstn columns ofCC are linearly dependent if and only if we can find multipliers such
that

S1j = 0 j 6= 1. (40)

The number of multipliers aren − 2 and the number of equations to fulfil is three.
So for generic parametersξi and ηi the determinant ofCC is zero for n > 5. So
mN = rankM̃ = min(4, N). Together with equation (22) the announced result (20) follows.

The argument above applies to generic configurations of the scatterers. There might be
members of the disordered ensemble (of measure zero) for which the argument above fails.

4. Level statistics

The discs are distributed randomly over the torus according to a uniform distribution. We
compute spectra for individual members of this ensemble. We choose the lattice constants to
bea = 1 andb = 21/4; exact degeneracies are avoided and the spectral statistics of the empty
torus is perfectly Poissonian [27].

The critical parameter is̃d(kR). As mentioned in the introduction, statistical studies suffer
because of the finiteness of the sample. However, ifR is sufficiently small, a sufficiently large
sample can be obtained with essentially constantkR. Since we are restricted to the range
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kR < 1 this would require such large values ofk that it would be numerically intractable.
Instead we artificially fixkR and and compute the bottom part of the spectrum [16]. We
compute around 600 levels for each configuration—computations do get a bit tedious for large
N .

We are interested in two measures on the spectra, the integrated level spacing distribution
P(s) = ∫ s0 p(s ′)ds ′ wherep(s) is the nearest-neighbour spacing distribution. Secondly, we
investigate the two-point correlation function of levels

R(ε) =
〈∑

ij

δ((E − Ei)d̄ + ε/2) · δ((E − Ej)d̄ − ε/2)
〉
E

= δ(ε) +

〈∑
i 6=j

δ((E − Ei)d̄ + ε/2) · δ((E − Ej)d̄ − ε/2)
〉
E

≡ δ(ε) + R̃(ε) (41)

where the average is taken over a large number of energies. The correlation functions are
computed over a gaussian window centred at the middle of the sample spectrum, its width
about one sixth of the sample size. The results are then smeared with another Gaussian of
width 0.2.

We learned from section 3 that the diffractive determinant first reproduces the full density
of states whenN > 4 so we will concentrate on those values ofN . But, to connect to our
results in [16] we will also include some results forN = 1. The reader should bear in mind that
forN = 1 only a quarter of the full density of states is resolved and the reported result applies
to this single subspace. Superposition of all four subspaces would result in more Poisson-like
statistics.

The underlying spectrum of the empty torus reveals itself clearly in the spectrum for large
values ofd̃. If N = 1 andd̃ = ±∞ the spectrum is Poissonian for a trivial reason; the zeros
of the determinant have been pushed towards the poles of the Green function corresponding
to the spectrum of the empty torus, cf [25]. IfN > 4 andd̃ →±∞ four zeros will be pushed
towards each pole. The corresponding limiting integrated level spacing distribution is then

P(s) = 3
4 + 1

4(1− exp(−s/4)). (42)

This limiting distribution is plotted in figure 1 together with results for two different values of
d̃ (N = 7).

ForN = 1 andd̃ = 0 the states are, so to say, repelled by the poles of the Green function
which result in a spectrum exhibiting level repulsion. The level spacings distribution is very
close to GOE, see [16] and figure 2. An exact agreement is not possible since the eigenvalues
are locked between eigenvalues of the integrable torus. This locking is released for high enough
N . The two-point correlation functioñR(ε) shows a clearer deviation from GOE thanP(s)
for N = 1, see figure 4. One of the main questions is whether GOE can be approached as
N →∞.

IncreasingN only toN = 4, while keepingd̃ = 0 (corresponding tokR = 0.899. . .),
yields exactly the opposite result. The level spacing distribution appears to be perfectly
Poissonian, see figure 2. We find the result very surprising and have not been able to find any
reasonable explanation. It is known that a Poisson-like distribution arises from independent
superposition of spectra, so one could think that the determinant (for some unknown reason)
factorizes. However, the reported distribution agrees better with the Poissonian prediction
than with the statistics of four superposed Wigner spectra, see figure 3. So the statistics still
appears to be Poissonian. One could also reply thatkR = 0.899. . . is too close tokR ≈ 1
to be physically relevant. However, we know that forN = 1 the diffractive approximation is
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Figure 1. The integrated level spacings distribution forN = 7 for two different values of̃d.

Figure 2. The integrated level spacings distribution ford̃ = 0 forN = 1 andN = 4.
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Figure 3. The integrated level spacings distribution ford̃ = 0,N = 4 compared with the Poissonian
spectrum and the result from four superposed Wigner spectra.

very good close tokR = 0.899. . . because a pole blows up the element in the KKR matrix that
corresponds to the diffractive approximation, cf [16], the same thing should happen ifN = 4.

In figure 4 we keep̃d = 0 constant and increaseN further. From now on we restrict our
investigations to the correlation functioñR(ε). According to the findings forN = 1 we expect
it to be a better indicator of deviations from GOE.

We find that, indeed, the correlator seems to approach that of GOE; forN = 17 it already
agrees much better with GOE than forN = 1.

This result is not restricted to any particular choices ofkR, contrary to theN = 1 case.
Next we are going to consider another series of data. Suppose we are increasingN and at the
same time decreasingR in such a way that the fraction of the billiard area occupied by discs is
kept constant:NR2

N = C. The corresponding spectra are then studied in the neighbourhood
of some fixedk. For small values ofkR we have [26]

d̃ ≡ 1

4

Y0(kR)

J0(kR)
≈ 1

2π

(
log

(
kR

2

)
+ γ

)
. (43)

We choose arbitrarilyk = 2 expγ /
√
C and thusd̃ ≈ − logN/4π , and we are led to study the

sequence

d̃N = − logN

4π
. (44)

The trend is the same, see figure 5. The correlation function approaches the prediction of GOE,
but the approach is of course much slower.

The conclusions suggested by these studies are summarized in table 1. The result in the
lower right-hand corner applies if the limit is approached according to equation (44).



736 P Dahlqvist

Figure 4. The correlation functionR̃(ε) for d̃ = 0 for variable number of scatterers, compared
with the GOE prediction.

Figure 5. The correlation functionR̃(ε) for d̃ chosen according to equation (44), for variable
number of scatterers, compared with the GOE prediction.
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Table 1. Suggested level statistics for various values of the parametersN andd̃ (kR).

|d̃| = 0 0< |d̃| <∞ |d̃| = ∞
N = 1 ≈GOE — Poisson
N = 4 Poisson — 4× Poisson
4< N <∞ — — 4× Poisson
N = ∞ GOE GOE GOE

5. Discussion

The emergence of GOE in the limit of many small scatterers hardly comes as a big surprise.
We consider the method rather than the results interesting—the results have been obtained
within the framework of periodic orbit theory.

Our numerical investigations of the systems are by no means exhaustive, we have merely
scratched the surface. We would like to perform further work on this class of system including
the following.

• Improve statistics.
• The system is so simple that an analytical treatment does not seem entirely out of reach.
• For regular lattices the diffractive determinant factorizes into a product over Bloch states.

The band structure of these systems will be addressed in a forthcoming paper.
• Study the transition from a regular structure to a disordered one.
• We also plan to study conductance by means of the Landauer formula [28, 29]. The

simple composition of Green functions of our diffractive system is perfectly suited for the
Landauer formula, which can be formulated in terms of transfer matrices.
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[29] Büttiger M 1986Phys. Rev. Lett.571761


